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TWISTING AND EXPANSION OF A HOLE IN A
NON-UNIFORM DISK¥

JENN-MING CHERNT and S. NEMAT-NASSER§

Department of the Aerospace and Mechanical Engineering Sciences,
University of California, San Diego, La Jolla, California

Abstract—Finite and infinitesimal deformation of an infinitely extended, axisymmetric disk of a non-uniform
initial thickness with a circular hole is considered. The disk is loaded along the interior surface of the hole by
pressure and twisting moment of non-decreasing magnitudes. A state of plane stress is assumed and the incremental
theory of plasticity is used. The material of the disk is assumed to be rigid-plastic for finite deformation and
elastic—plastic for infinitesimal deformation. The analyses are based on the Tresca yield criterion and the isotropic
hardening law, and emphasis is placed on the effects of the twisting moment, hardening parameter and loading
path on the solution. Detailed results and comparisons are given for an initially uniform and an initially conical
disk. Finally, comparison is made between solutions for elastic—plastic and rigid-plastic disks, revealing that the
stress field is only slightly affected by the elastic strains.

NOTATION

A a function of ¢

AB, B,etc.  plastic regimes in initial yielding

A'B’, B, etc. plastic regimes in subsequent yielding

a function of m, n and p,

Young’s modulus

= E/o,

a function of n, Ry and p,

1,G,,#  functions of &, R and p,

Hy = ho/ag, H = hjog

dimensionless load parameters defining pressure and twisting moment, respectively

o

Q::*uomcacnm:m
s

0, R Ry = ro/bo, R = r/b,

v Ug dimensionless radial and circumferential displacement-components; U, = u,/by, Uy = ug/b,
V..V dimensionless radial and circumferential velocity-components; V, = v,/by, V; = vy/bg
W, plastic work/unit volume
a hardening parameter
by, b radius of circular hole in undeformed and deformed states, respectively

= b/b,
e a function of ¢
f yield function
hg, h thickness of the disk in undeformed and deformed states, respectively; hy = ay(ro/bo)"
ro,r radial distance in undeformed and deformed states, respectively
t time parameter
u,, Ug radial and circumferential displacement-components
v,, Ug radial and circumferential velocity-components
D0,,D, functions of R and p,
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r,,r; curves in the plane of load parameters

oo, 1 constants defining the initial thickness of disk ; by = ag(ro/bs)"

o, O thickness of the disk at the edge of the hole in undeformed and deformed states, respectively
B constant depending on n and v

n material constant; #§ = aoo/E

£, £y, £, €,  €lastic strains
b

&, €9, €19, €, plastic strains

Do interface between rigid and neutral plastic regions
Po interface between elastic and elastic—plastic regions
P4 interface between neutral and active plastic regions
02 interface between active plastic regions
= Pl # 0
i a nonnegative function depending on state of stress
Poisson’s ratio
¥ a function of 6 and R
0y, 0 initial and subsequent yield stresses in simple tension
4 = g/0,
G,,0q, 05 stress components
G,.89, 09 G, = 6,/04, Gy = 04/00, 0,9 = 0,4/00

angular coordinates of particles in undeformed and deformed states, respectively
material-time-derivative of (.. .)

~
L)

1. INTRODUCTION

THE problem of the expansion of a circular hole in an infinitely extended disk of a uniform
initial thickness, subject to a pressure applied along the edge of the hole, has been considered
by Taylor [1], Hill [2], Prager [3] and Hodge and Sankaranarayanan (4]. A similar problem,
but for an initially non-uniform disk, and under the assumption of plane stress, has been
considered by Alexander and Ford [5], Rogers [6], Nemat-Nasser [7], Chern and Nemat-
Nasser [8] and Chern [9). In the case when a pressure is applied on the interior surface of
the hole, a similarity solution becomes possible and the problem may be characterized by
only one time-space independent variable.

For a combined loading problem, where the interior surface of the hole is subjected
to both a pressure and a shear loading, the geometric similarity does not exist, and the
solution becomes more complicated. Nordgren and Naghdi {10] considered the problem
of simultaneous expansion and twisting of the interior surface of a hole in a finite or infinite
plastic plate of a uniform initial thickness, using the yield conditions of Tresca and Mises
and the associate flow rules together with an isotropic hardening law. A complete solution
is given by these authors for Tresca’s yield criterion and its flow rule. These authors [11]
also analyzed a similar problem using an infinitesimal theory, and discussed the unloading
solution.

In this paper, we first consider the axisymmetric, finite expansion and twisting of a
circular hole in a disk of a variable initial thickness. A state of plane stress is assumed,
and Tresca’s yield criterion together with the isotropic hardening law is used. Detailed
numerical results are given for the initially uniform and conical disks, and the effects of
twisting moment, hardening parameter, and loading path on the field quantities are
investigated. The problem is then reconsidered on the basis of an infinitesimal theory,
including the elastic strains. The effect of the elastic strains on the field quantities, and
the possible justifications for the assumption of rigid—plasticity are examined. We note that,
from the solutions presented in this paper, some of the results of the previous investigations
{10, 11] are deduced as special cases.
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2. STATEMENT OF PROBLEM AND BASIC EQUATIONS

We consider the axisymmetric expansion and twisting of a circular hole in an infinitely
extended, axisymmetric disk of the initial contour hy = ay(ro/by)", where r, measures
radial distance in the undeformed state, b, is the initial radius of the hole, and «, and n
are constants; o, is the initial thickness of the disk at the edge of the hole. Let the radius
and the thickness at the edge of the hole in the deformed state be denoted by b and «,
respectively. On the inner boundary r = b, the disk is subjected to a normal compressive
force of magnitude Payoy, per unit circumferential length, and a twisting moment of total
magnitude mraobo,, where oy, is the initial yield stress in simple tension for the considered
material, and P and m are the dimensionless load parameters which are assumed to be
non-decreasing functions of a time parameter ¢. Since a quasi-static loading is considered,
t denotes a conveniently selected, monotonically increasing (or perhaps decreasing)
parameter.

Referring to cylindrical coordinates (r, 8, z), we denote the Eulerian stress-components
by o,, g4, 0,4 and o,, the displacement-components by u, and u,, the velocity-components
by v, and v,, the current thickness of the disk by A, the Young’s modulus by E, and introduce
the following dimensionless quantities:

{6y, G, 619,62, E} = {0,,04,0,,0,, E}/oo
{H,Ho,% b} = {h, ho, o b}/ag, @n
{R,Ry, U,, Uy, V,, Vg} = {r,ro, thy, Uy, 0,, 0g}/bg.
For a state of plane stress with ¢, = 0, the non-zero stress-components satisfy the following

equations of equilibrium:

é H  _
ﬁ(ng) + E (O', - 09) = 0, (223)

é
_(HR%G,,) = .
aR( R*G) = 0, (2.2b)
and the velocity-components are given by
V.= R(R,1), V,=RHR,1), 2.3

where a superposed dot stands for the material-time-derivative, that is, partial time-
derivative with the initial particle position, R,, held fixed. Hence, the non-zero components
of the strain-rate tensor are

W
“TR "TR

. 2.4)
L _tpo(w . _H
BEIRRIR) =T w

where é, and §, satisfy the following compatibility condition :

0
& = -a‘E(Rég). 2.5
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We note that in the infinitesimal theory, no distinction needs to be made between R and
Ry, and, thus, (2.4) may be written as

v, U, oU, U,

3R s Eg = 28,9 = "aT—?, H = H0(1+82). (26)

&

For an elastic—plastic material, the strain-rate tensor may be decomposed into the
elastic and plastic parts which will be designated by the superposed prime and double
primes, respectively. The elastic strain-rates are related to the stress-rates by Hooke’s law

{8;’ 8;), é;‘Oy slz} = {ULr_ VO-LO’ &0'— V&r’ (1 + V)&ro’ - V(OL',“I' &O)}/E, (27)

where v is Poisson’s ratio. The plastic strain-rates are related to the stress-rates by the

plastic flow rules.
For the state of plane stress with 5, = 0, the dimensionless principal stresses &, and 7,

are given by
{61,602} = 40, +Go)F [4(6, — o)* + 571 (2.8)
According to Tresca’s yield criterion and isotropic hardening law, with yield stress in

simple tension denoted by ¢ = Gg,, and the hardening parameter designated by a, the
yield function has the form

f = max{|g,],10,|,161 —&,]} =6 = 0, 29)
where
¢ =aW, with 6=1 for W,=0, (2.10a)
and
t
W, = f (G + Gk + 25 ,06l0) dt, (2.10b)
[}

where W0, is the work expended/unit volume in plastic deformation. Tresca’s yield
function (2.9) defines a yield hexagon in the &, &,-plane (Fig. 1). In accordance with the
isotropic hardening law, the initial yield hexagon (with & = 1) expands uniformly as the
plastic deformation continues. As we shall see, only the plastic regimes defined by the side
AB and the corner B of the yield hexagon in Fig. 1 are of interest to us. On the regular
regime AB, the yield function becomes

fap = (6,—Go)* +4675—6> = 0, (2.11a)
and the corresponding plastic strain-rates, as determined by the flow rules, are

A
{B;'/a 85’ é;'/o’ 8;} = 5{61'—"60’60_6” 26r6a0}' (211b)
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FiG. 1. Tresca’s yield function and isotropic hardening law.

At the singular regime B, on the other hand, we have

6,60 = G, G, +69= —0, (2.12a)
N _ _
{8:’85"9:0’8:} = 5{0}—)’0’9, 0'9’)’0},(1 +y)0r0,(1 '“'Y)O'} (212b)
In (2.11) and (2.12)
A>0, 0<y<l, (2.13)

and the plastic incompressibility

& +é5+E =0 (2.14)

is also used. We note that a state is on the regular regime AB (or A'B, see Fig. 1) if 5, <
0 < &, which is fulfilled provided that

6,69 < G, (2.15)

as can be seen from (2.8). Substitution of (2.11) and (2.12) into (2.10) shows that, on the
regimes AB and B, the isotropic hardening law takes on the form

& = $hac>. (2.16)
For the loadings considered here, the stress field must satisfy the boundary conditions
G, = —P(t)/Ja at R =D, (2.17a)

G = 3m(t)/ab* at R =5h, (2.17b)
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and for points at infinity we must have

;im {6,,09,6,4, U,, Ugt = 0. (2.17¢)
The solution of (2.2b) with the boundary conditior (2.17b) is

.0 = m(t)/HR?. (2.18)

When no plastic deformation has taken place, the disk is fully elastic, ¢, = ¢;, &g = &

and ¢,y = &4. In this case, the infinitesimal theory may be used, and hence we set R = R,
in the equations of equilibrium. Upon substitution of the expression for the initial contour
of the disk into the equation of radial equilibrium (2.2a), we obtain
06,
oR’
We may eliminate &, from (2.19) by using stress—strain relations {i.e. (2.7) without superposed
dots] and the compatibility condition [i.e. (2.5) without superposed dots}, and solve the
resulting second order ordinary differential equation for &,, subject to the boundary
condition (2.17c), obtaining

Go = (n+1)5,+R (2.19)

5, = —AR™4 (2.20a)
From (2.19), 64 now is
Gg = A(B—n—1)R#, (2.20b)
where A is a function of ¢, and
B = 4n+2+(n*—4nv+4)%] (2.20¢)

The strain can then be readily obtained by substitution from (2.20) and (2.18) into the
stress—strain relations, yielding

6, = —[1+Wp~n—DIR™, (2.212)
A _

% = SlB-n—-D+IR", (2.21b)

by = l—z%va"”, 2.21¢)
Av _

& = Hn+2-PR, 2.21d)

Substituting (2.21) into (2.6), integrating the resulting equations with respect to R from R
to oo, and using the boundary condition (2.17c), we obtain

y
U, =E[([3——n—1)+v]R”’l, (2.22a)
Uy= rll—%R"+l, (2.22b)

H= Ho[l +%(2+n—ﬂ)R“]. (2.22¢)
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We note that for n = 0, (2.22¢) reduces to H = H,,. Since the disk is fully elastic, the
integration constant A (as a function of t) is determined from (2.20a) and the boundary

condition (2.17a) (with & = 1) as
A = P(1). (2.23)

For the Tresca yield condition considered here, the plastic deformation initiates at
R = 1 with the vanishing of the initial yield function, given by (2.11a), which corresponds
to the regime AB. Substitution from (2.18) and (2.20) into (2.11a) now results in

(B—n)*P*+m? < 1 (2.24)

which assures that the disk is fully elastic and which defines a domain bounded by the
ellipse I';, whose equation is (B —n)?P?>+m? = 1, and the P-, m-axes in the plane of the
load parameters m and P (see Fig. 2).

For further loading in violation of (2.24), plastic deformations take place at the vicinity
of the hole.

(1,1.5)

c)

5 ()

(a)

~J

~-Nr

o5t

P(t) |

0 R
0 m(t)

Py

05 1.0

Fi1G. 2. Plane of load parameters m and P.
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3. FINITE DEFORMATION OF A RIGID-PLASTIC DISK

For rigid-plastic disk and upon further loading that violates (2.24), a plastic region
corresponding to the regime AB (Fig. 1) develops in the part of the disk defined by 1 <
R < po,where py, as a function of t, is the dimensionless radius of the plastic-rigid interface.
In the rigid region R = R, > py, the stress and the displacement fields are obtained from
the corresponding elastic solution by setting v = 4 and E = oo. Therefore, (2.21) and (2.22)
show that

V;':I/E?:UrzUezgr:_-gB:SrG:S::H“HO—_—O’ RZpO (3'1)
The stress-state is still given by (2.18) and (2.20) with
A = (B—n)"1p§(1 —m?pg 2"~ 4 (3.2)

which is obtained from the condition (2.11a) at R = p, with 6 = 1, and f§ is given by
(2.20c) with v = }. Since B > n, 4 in (3.2) is always positive, rendering G, < 0 < &, for
n < 2 and R > py. Moreover, from the continuity of &,, 6,9, and f4p at R = p,, it follows
that &, is also continuous there. Equations (2.4} and (2.11b) now yield

RV, = é@) (3.3)

in the regime AB, where €(t) is independent of R. Since ¥ is continuous at R = p, and
vanishes for R = p§, we conclude that V, = 0 everywhere. Thus, using (2.3) and (2.4),
we arrive at

ér=ég=éz:09
R=R,, H=H, for 1<R<po.

From (2.11b) we must either set A = O or &, = &,. By the radial equilibrium requirement,
(2.2a), and the boundary condition (2.17a), however, 6, = 6, leads to &, = 3, = constant < 0
which contradicts the condition &, # & at Ry = pg ; this condition corresponds to the
solution in the rigid region. We must, therefore, set 4 = 0, obtaining

Erl):O’ 0=009

where 6, measures angular position in the undeformed state. Hence, for the neutral regime
AB, there is no plastic flow and, consequently, no strain-hardening effects. We need only
to consider the stress field in the region 1 < R < po.

To this end, we substitute from (2.18) into the yield condition (2.11a}, and noting that
& = 1 in this case, obtain

G,—~Gg = —(1—m?R™2"" 4} (3.4
where the negative sign on the right side assures that ¢, and @, are continuous across the

section R = po. Substituting (3.4) into the equilibrium equation (2.2a), setting R = Ry,
H = H, = R}, and using the continuity of the radial stress &, at R = po, we finally arrive at

} n
G, = ——(1—m?p5 "%} 22} _ R5"G(n, Ro. po) (3.5a)
B—n Ry



Twisting and expansion of a hole in a non-uniform disk 837

which, with the aid of (3.4), yields
Go = G,+(1 —m?Ry 1"~ %)}, (3.5b)

where
Po
G(n, Ry, po) = f E Nl —mPET 2 g, (3.5¢)
Ro

We note that 6,4 is given by (2.18).
From (3.5a) and (2.17a), we obtain

1 e
P(t) = m(l —m?pg 2" T4 ph + Gin, 1, po) (3.6)

which relates p, to the load parameters P(t) and m(¢).
In obtaining the results presented above, we have tacitly assumed that

m(t) < 1, (3.7a)
and
m(t) < p*2, (3.7b)

which are required in order to render all the involved physical quantities real; note that,
only for n > —2, (3.7a) implies (3.7b). We now examine the constraint (2.15) which must
be fulfilled if the state of stress is to stay on the regular regime AB. The material element
at Ry, = py is in the state of stress corresponding to the point D in Fig, 1, while the stress-
state for an element at Ry = 1 is defined by a point located somewhere between D and B.
When the applied loads are such that (3.7a) is satisfied and n > —2, the state of stress at
R, = 1is at the corner B of the yield hexagon when 5,(1) = —4—3(1 —m?)?, as can be seen
from (2.12a), (3.7) and (3.4). Because of the boundary condition (2.17a), the region 1 <
R, < po remains in the state of stress corresponding to the regular regime AB if

P(t) < 4[1+(1 —m?)*]. (3.8)

The domain bounded by the curve I', and the P- m-axes in Fig. 2 corresponds to (3.7a)
and (3.8). The region 1 < R, < py(t) is in the neutral plastic state, corresponding to the
regime AB, as long as the restrictions (3.7) and (3.8) are not violated anywhere in this
region. Upon further loading, either (3.8) or (3.7) may first be violated, and, hence, two
different plastic solutions, which will be called plastic solutions I and II, respectively,
must now be considered.

A. Plastic solution I

(a) General formulation. When the load parameters P(t) and m(t) are increased in such
a manner that the inequality (3.8), but not (3.7), is violated, there develops a new plastic
region b < R < p, corresponding to the singular regime B (Fig. 1), where p,(t) is the
radius of the interface between the plastic region corresponding to the regime 4B and that
pertaining to the corner B of the Tresca’s yield hexagon. The stress field in the rigid region
R = Ry = po 1s given by (2.18) and (2.20) with 4 defined by (3.2), and that in the neutral
plastic region p;, < Ry < po is furnished by (2.18) and (3.5), where p, remains to be deter-
mined.
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In the new plastic region b < R < p,, G, is given by (2.18). Substituting (2.18) into
(2.12a), and solving the resulting equations for &, and &,, we obtain

.=~ PR, (3.92)
Gy = —%+%(62—m2H"2R‘4)%. (3.9b)

With the aid of (3.9), the equilibrium equation (2.2a) may now be integrated, yielding
HG = D/(2DR* —m?)}, (3.10a)

where D = D(t) is determined from the requirement that H = Hyand § = 1 at R = p,,
1.e.

D*=2p3"**D+m?pi" = 0 (3.10b)
which yields
D = pilpi* 2 +(pi" " —m?). (3.10c)
From (3.10a) and (3.9) we now obtain
a, = —a(l—m?/2DR?), (3.11a)
Gy = —am?/2DR*. (3.11b)

The relation between po and p; is found from the continuity of the radial stress &, at
R = p,. From (3.5a) and (3.9a) we now obtain

- —4\4 2 —2n—4\ n -n
I+(1—m?py 2"~ %) _,3_—71(1 —m?pg 2" N (po/p1)' —2p71 "G(n, py, po) = 0, (3.12)
where the fact that 4 = 1 and H = H,, for R = p, is also used. Equations (3.11a), (3.10a)
and the boundary condition (2.17a) now relate P to p, as

P = (2Db—m?)}/2b%, (3.13)

where the dimensionless current radius of the hole, b, remains to be determined from the
displacement field.
Taking the time-derivative of both sides of equation (3.10a) and using (2.3) and (2.4),
we obtain
6 D

é = —g+5—(DR2 —mm+2DR?6)(2DR? —m?)™ . (3.14)
Substitution from (3.11) into (2.12b) yields
A
é = 56[— 1+(1+y)m?/2DR?], (3.15a)
LA 29 pR2
& = Ea[y—(l +yym*/2DR"], (3.15b)
. A
£ = <a(l—7). (3.15¢)

2
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Equation (3.14) may now be substituted into the plastic incompressibility condition which,
with the aid of (2.4), yields

oV, m? V, & D  Dm?2D—mm

r __.—....“ Y R AR St bt . 1

R IDR—m’R & 2D' 2DR—m (3.16)

Substitution for & from (3.15b), and for £, from (3.15¢) into (3.14) now results in
is DR? —m? _ _g‘+_1§__1')m2/2b—mn'e
2DR? —m? & 2D 2DR*-m?
which, with the aid of the hardening law (2.16), yields
A 1 a D/D(DR? — m?) +mm

2% T 4G T ADRP—m?)+a2DRE—m?)

(3.17)

Now we replace g by V,/R and solve for y from (3.15b}, obtaining
_ m? +(4D/AG)RYV,
~ 2DR*—m?

Equations (3.16-18) govern the variations of V,, &, A and 7.

Noting that ¥, = 0 at R = p; and using (3.10c), we integrate (3.16) with respect to R
from R to p,, at a fixed ¢, to obtain

(3.18)

R =V, = 2DR)"'(2DR*>—m?)*1, (3.19)
where
1= ————P--—[(zz)Rz—mz)%-Dp“ﬂ— 2’"—2—mm [(2DR? —m*) ™%~ p%/D]
2D(1 +a) ‘ 2D P
(3.20)
am—abDm/2(1+a)D . [(1+a)}(2DR?> —m?) —m][(1 + a)*Dp; "+ m]
21+ap [(1+a)*Q2DR>—m*)? +m][(1 +a)*Dp;"—m]
From (2.4}, (2.12b) and (2.18}, we have
v 4 s
ﬁ( R) SA+y)m/HR?, (3.21)

Now, substituting (3.17), (3.18) and (3.10a) into (3.21), we integrate the resulting equation
with respect to R from R to p,, and using the condition that V(R = p,} = 0, arrive at

ézﬁs_@{_mm 1

T D[(pl/po)2+am2/2v]}( R 2457

+[m—aDm/2(1 + a)D][(2DR?* —m?)}/2DR* —4p;7 "™ ?]
(3.22)
1

+ [*:‘ - aI')/Z(I + a)D}(I +a— sz/ZDRz)m

[(1+@)*@2DR? —m?)* —m][(1 +a)* Dpi " +m]
[(1 +a)}2DR* —m*) +m][(1+a)!Dp; " —m]
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(b) Solution for a general loading program. A general loading program may be approx-
imated in the plane of the load parameters, P and m, by a piecewise linear path. On the
ith segment of this path with the end points (m;, P,) and (m;,,, P, ), we set

P = i, (3.23)

where y; is a non-negative constant.
Taking the time-derivative of (3.13), we have

D = 2P +b/B)(2Db* — m?)* — Db/b+ mmb 2 (3.24)

which, in view of (3.10c) and (3.21), expresses p, as a linear function of P and m with
coefficients depending on the current state. If we identify the time parameter with either
P or m and use (3.23), we obtain, from (3.17), (3.19), (3.22), (3.24) and (3.19) with R = b,
a system of first-order quasilinear differential equations for the dependent variables
&(R, 1), R(t), (R, t), p,(t) and b(t), where the coefficients in this system of equations depend
on R and b. For each element located at (R, 8,) in the undeformed state of the disk, we can
define a time ¢, at which its state of stress reaches the corner B of the yield hexagon and
R(to) = Ry = py(te), O(R,ty) = 8o, b = b(ty), m = m(ty) and P = P(ty). Then, we may
employ the standard method of numerical integration, for instance the Runge-KuttaGill
method [12], to solve this initial value problem. The thickness profile and the stress field
are then calculated according to (3.10a), (2.18) and (3.11).

For a workhardening material, the material properties at a deformed state depend on
the strain history, and, hence, the integration of (3.19) and (3.22) in a closed form is not,
in general, possible. We, therefore, must employ a numerical approach.

(c) Solution for perfectly plastic materials. For perfectly plastic materials we have
a = Oand & = 1. Thus, with the aid of (3.10b), we reduce (3.19} to

1o B
[2DR*—m?)*) = (Dpy"y ———(p7"?) (3.25)
n+2
which may now be integrated with respect to ¢, yielding

2 7
2 (p%;1+4_m2)i-(npr{+2+2R3+2)+ - pr1r+2+ Rv(i)+2) ] ,

H
_ -3 2n+4
R =D [”‘ Tai2 2T
(3.26)

where the conditions that R(to) = Ro and p,(to) = R, are imposed, and (3.10b) is used.
Moreover, setting @ = 1, and substituting (3.26) into (3.10a), we obtain
1
H = D[(p?"t*—m?)i +——=(mnpi T2+ 2R 9~ L (3.27)
n+2
From (3.26) and (3.13), we then relate P(t) to p,{¢t) as

Pt ‘ 2nt+4 P 1 n+ 2 2 ll Ia+4 2 2n+4 22
( ) - D (pl m ) z(npl + ) pl ] (P] m )2

SRR Rt
x——(np"*+2)+ (R .
n+2( P ) nr2tt Tuia
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Although the expression for @ in (3.22) can be simplified for a perfectly plastic material,
the direct integration with respect to ¢ is still not possible and a numerical integration is
required ; this reveals the fact that the angular displacement is a path-dependent quantity.

(d) Conditions assuring the validity of solution. In addition to the restriction (2.13),
which assures that the stress-state remains in the singular regime B (Fig. 1), we must
consider the following conditions

2Db? > m?, (3.29a)
m < p'{+2, (329b)

which are required in order to render all the physical quantities real. In view of (3.13),
(3.29a) is fulfilled if P(t) > O, but (3.29b) may still restrict the admissible values of P and m.
In view of (3.10c) and (3.28), for non-hardening materials, this restriction takes on the form

m(2n+ 2)/(n+2)

> . 3.30
m* +(nm+2)/(n+2) (3:30)
The corresponding form for hardening materials cannot be obtained explicitly and must

be imposed in the course of the numerical integration.
From (3.10c) and (3.29b), it can be shown that

Dp?—m?>0 (3.31)

which, together with (3.17) and (3.29b), shows that the condition A > Ois satisfiedat R = p;.
To see the implication of A > 0 in the region b < R < p,, we rewrite 1 > 0 and (3.17)
in the form

1 Dm? 1
a -m )( > 0, (3.32)

1+a2D" (mm—— l1+a 2D |(14+a)(2DR?* —m?*)—m?
forb < R < p,,m >0and D > 0. Now, to satisfy (3.32), the quantity (1 + a)(2DR* —m?)—

m? must not change sign for the values of R between b and p, . Therefore, because of (3.31),
we must have

(1+4)[2DB? —m*]—m? > 0. (3.33)

If (3.29a) and A > 0 are fulfilled, it can be seen from (3.18) that y > 0 is automatically
satisfied. We can express the condition implied by y < 1 in terms of the rates of the field
quantities, using (3.17) and (3.18). For non-hardening materials, this leads to

D(2Db* —m?)t > p'i(Dp? — mm). (3.34)

The equality in (3.34) for non-hardening materials, or in general when y = 1, causes a
new plastic region to develop at the vicinity of the hole; this plastic region corresponds to
the regular regime AB and has the flow rule (2.11b). We note that, since £, = 0 in this new
plastic region, the thickness at each element remains at the same value that it had reached
at the end of the solution corresponding to the singular regime B.

B. Plastic solution I1

We now consider the solution for m > 1 which violates (3.7a). First we observe that
when m > 1, equation (3.4) (which pertains to the neutral plastic region) does not remain
valid if the hole’s radius stays at its initial value by,. We must, therefore, consider a new
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plastic region, b < R < p,, at the vicinity of the hole that corresponds to the regime 4'B’
of the yield hexagon (Fig. 1). The solution for the rigid region R > p, is given by (2.18),
(2.17) and (3.2), and that in the neutral plastic region p, < R < p, is given by (2.18) and
(3.5), where p, and p, are as yet to be determined.

In the new plastic region b < R < p,, (3.3) is still valid and the continuity of V, at
R = p, requires that ¥, = 0 for b < R < p,. Thus, from (2.4) and (2.11b), we have

=8 =4¢6=0, R =Ry, H=H,= R}, {3.353)
and, hence, the considered region is characterized by
G, =Gy, A>0, iy #0. (3.35b)

Since in this region no radial displacement takes place, 6,4 is given by (2.18). Substituting
(3.35b) into (2.11a), we have

G =26,=mR;""% for 1 <Ry <p,. (3.36)

Now, with the aid of (3.35) and the boundary condition (2.17a), the equilibrium equation
(2.2a) can be solved, yielding

G, = Gy = —PRg". (3.37)

Setting Ry = p, in (3.35b) and (3.4), we relate p, to m as
m = pi*t2 (3.38)
From (3.5a), (3.37) and the continuity of 6, at R = p,, we obtain
1 PAEASaE
P= ﬁ_np?)[l"(;;) ] +G(n, p1, po) (3.39

which relates py and P. In (3.39), the function G is defined by (3.5¢).
Substituting (3.36) into the hardening law (2.16), we obtain

)' m n+2
which, with the aid of (2.11b), {2.18) and (3.38), now yields
25
b= T2 P1 (3.40b)
a

Equation (3.40b) and the relation (2.4) then give

2 (V) _ 24D L (3409
R\ R, :

which, with the condition that VR, = p{) = 0, can be integrated with respect to R,,
yielding

(3.40d)
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Treating p, as our time parameter, and noting that 8 = 8, at p, = R,, we can integrate
(3.40d) to obtain
n+2{. Rp\?
6 =0,————{In—2
a Py

(3.41)

which also indicates that the solution given in this section is valid only for hardening
materials, a > 0.

Because of (3.40a), the restriction 4 > 0 is always fulfilled if s > 0. From (3.35b), the
restriction (2.15) requires that |G,| < G, for 1 < Ry < p; which, in view of (3.36-38),
yields

P < mmer2), (3.42)

When the condition (3.42) is first violated (with an equality sign), it can be shown from
(3.37) and (3.38) that at R, = p,, 6,y = —6,, 6; = 0 and 6, = —26,4 < 0; this state of
stress corresponds to the singular regime B’ of the yield hexagon (Fig. 1). For P > im"*2),
there exists a new plastic region, p, < R < p,,in which the state of stress is at the regime B':
this new plastic region bounds the inner region b < R < p, at R = p,. The solutions for
the regions p, < R < p,, p; < R, < po and R, = p, are essentially the same as those
considered in the last section; the functional relations among p,, p,, P and m, must, of
course, be determined.

In the region b < R < p,, the state of stress is on the regime AB, where no thickening
takes place. We thus must have

RV, = RR = (t) = p,V,(R = p,). (3.43a)

We denote by t,, the instant at which this region is initiated, where e(t,) = 0, R(tg) = R, and
pi(to) = palte) = pro; fort > ty, p; > p,. Then, we integrate (3.43a) with respect to ¢ from
to to t, obtaining

R? = RZ+2e(t), (3.43b)

o) = j VAR = py)dt, (3.43¢)

o

where V,(R = p,) is given by (3.19). Since §, = H/H = 0 implies that H = H,, from (3.43b)
we have

H = (R*—2¢y"? (3.44)
which can then be substituted into (2.18) to yield
_ m_ _ _
Gro = ER 2(R%2=2¢)~ "2, (3.45a)
An equation governing 0 is then obtained from (2.3), (2.4), (2.11) and (3.43) as
0 L 4B

_— = R —_———— .
R™ T @@—day (3.450)
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where 4,4 is given by (3.45a). Now, we can eliminate H, 6, and 6, from (2.2a), (2.11a), (3.44)
and (3.45a), integrate the resulting equation, and using the boundary condition (2.17a),
obtain

g, = —PRg"+R;y" J;R i(y2 — 2e)"? (62 —mty *(y?—2¢) "t dy (3.46a)
and
Gy = 6,+ [0 —m*R™*(R? —2e) "]} (3.46b)
Moreover, from (2.4), (2.11b), (2.5), (3.43a) and (3.46), we have
6 = éac’[6°R* —~m*(R*—2¢)™ " * (3.47a)
which is the equation governing & subject to the condition
G(R,t = to) = m(t = to)Rg"? (3.47b)
given by (3.36). Setting R = p? in (3.10a) and using (3.43b) and (3.44), we obtain
&R = p?) = D(2Dp3 —m?)" }(p3—2¢)""?, (3.48)

where D is given by (3.10¢) as a function of p, and m. From (3.11a), (3.46a) and (3.48), the
continuity of , at R = p, now yields

P2
P = 3p3*2Dpi—m) + f 67y (% — 2" — m?y~°J* dy. (3.49)
b

Taking the derivative of (3.49) and using (3.43), (3.47a) and (3.48), we have
P = {gi(b, p2) = b7 *[b*G%(b)—m*]*}¢é +3(2Dp3 —m?) " *D
—[82(b, p2) +1p3 *(2Dp3 —m?) " *]mm, (3.50a)

where

g1(b, p2) = f (=TTt + 2y gs(] a0 — 20 gy (] '} dy,(3.50b)

P2

g6, p2) = f V> ga0] dy, (3.500)

b
and where
g3(R) = F*RYR*—2¢)"—m?. (3.50d)

For the numerical calculation, it is convenient to consider p, as our time parameter.
With the aid of (3.10c), the rate quantities ¢, P and 1 at a given state and for a general loading
program can be obtained from (3.23), (3.50), (3.43a) and (3.19). With ¢ known, & follows
from (3.47) and &(R, p,) for b < R < p, can be obtained from (3.45b) with the boundary
condition 6(p,, p,) given by (3.22) for R = p,. From these rate quantities, we can now solve
for the field quantities at a new state ; due to the fact that the coefficient of p, in (3.50a) is
identically zero, the values of p, at this new state cannot be calculated directly and have to be
evaluated from the condition (3.48) which must be satisfied at R = p,.

For the special loading program

m = mo = constant = m(t), (3.51)
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we can relate G(R, p,) to e(p,) and p,(p,) to p, implicitly, where p, is considered as the time
parameter. Indeed, for the loading program (3.51) and in view of (3.43b), (3.47) can be
integrated to yield

[45(R3 +2¢) +2¢(5, €)]*'[5(R3 +2¢) + (5, €)] %5+

= a%mg 2@~ PR3- Datn+D) - forq # 2, (3.52a)
and
5(R3 +2¢) + g(G, ¢) = mg 'G2Ry+* 86.¢) fora=2, (3.52b
o(R5+2e)+2(6,e) = mg G6°R{ exP|:6(R6+2e)+g(6, 2 or a ( )
where
g7, e) = [6*(R3+2¢)> —m}Rq 2. (3.52¢)

Setting R3 = p3 — 2e, we obtain, from (3.48) and (3.52),

[(a+2)Dp3 —2m3)**[2Dp3 —m3] ™"~ *(p3 —2¢)"*** = D" *a"m5 >~ 2, fora # 2,
(3.53a)

and
mo(2Dp3 —m3)**(p3 —2e)~? = D? exp[1 — Dp3(2Dp5—m§)~ '], fora =2,  (3.53b)

where D as a function of p, is defined by (3.10c) with m = m,.

C. Discussion and numerical results

As can be seen from the results of subsection 4 —(c) of the present section, the angular
change 8—6, in an active plastic state depends on the strain history even for a perfectly
plastic material (a = 0). For workhardening materials, the solution in an active plastic
state must be obtained by tracing the strain history. For this purpose, we have expressed
the governing equations in the form of a system of first-order quasilinear differential
equations, reducing the problem to an initial value problem which can be solved readily bya
numerical method [12].

Figure 3(a) is the plot of the radial displacement u,/b, = U, at the hole as a function of
the pressure parameter P for the indicated values of m and a, and for an initially uniform disk
(n = 0); the values of the work-hardening parameter ¢ are taken to be 0,0-1,0-5, 1 and 5, and
for each value of a, the values of twisting parameter m are taken to be 0, 0-5 and 1. The
corresponding results for an initially conical disk (n = 1) are shown in Fig. 3(b). We note
that the results in Fig. 3(a),forn = Oand a = 0, are also given in [10]. From Figs. 3(a) and (b),
we observe that, for given values of P and m, the radial displacement U (b) decreases with an
increase in the workhardening parameter a, and increases with an increase in the twisting
parameter m for fixed values of P and a.

We next consider the solutions corresponding to the state m = 1 and P = 15, being
attained by the three loading paths (a), (b) and (c) which are shown in Fig. 2. Figure 4 shows
the thickness distribution for n = 0 and n = 1, and a = 0, 0-1 and 1; the results for the
paths (a), (b) and (c) are shown by solid, dashed and dash—dot lines, respectively. It can be
seen from Fig. 4 that these three loading paths yield quite different thicknesses at the vicinity
of the hole. The corresponding results for the stress fields in the active plastic region are
shown in Fig. 5(a) for n = 0 and in Fig. 5(b) for n = 1. As is seen, the stress field is highly
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F1G. 3(a). Radial displacement at the edge of the hole for n = 0 and indicated values of m and a.
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FIG. 3(b). Radial displacement at the edge of the hole for n = 1 and indicated values of m and a.
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FiG. 4. Thickness distribution for m = | and P = 1-5, and three loading paths shown in Fig. 2.
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F16. 5(a). Stress distribution for n = 0, m = 1 and P = 1-5, and three loading paths shown in Fig. 2.
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FIG. 5(b). Stress distribution for n = 1, m = 1 and P = 1-5, and three loading paths shown in Fig. 2.

affected by the workhardening parameter a. For perfectly plastic materials (a = 0), only
the component 6,9 is path-dependent; the distribution of &, for path (b) cannot be dis-
tinguished in the figure from that corresponding to the path (c). For workhardening
materials (@ = 1), the components 6,4 and &, for path (b) cannot be distinguished in the
figures from those for the path (c); the distributions of &, for these three paths are quite
distinct. For more accurate results, we record in Table 1 the values of the radial displace-
ment, angular displacement and thickness, all at the edge of the hole, forn = 0and n = 1,
and corresponding to the three paths (a), (b) and (c).

The angular displacement at the edge of the hole of an initially conical disk (n = 1) is
displayed in Fig. 6 for several values of ¢, and P < $m?*. This figure again reveals the effect
of the workhardening parameter, a, on the displacement field.

4. INFINITESIMAL DEFORMATION OF AN ELASTIC-PLASTIC DISK

A. Elastic—plastic solution

In this section we shall consider the elastic—plastic solution at the vicinity of the hole for
further loading subsequent to the initiation of a plastic state at the edge of the hole; elastic
strains are included and infinitesimal theory is used, hence, no distinction will be made
between R and R, and & = 1. As in the last section, upon further loading that violates
(2.24), there develops a plastic region | < R < p, at the vicinity of the hole, where p,
defines the elastic—plastic interface. In the elastic region R > p,, the displacement and stress
fields are given by (2.22), (2.18) and (2.20) with A defined by (3.2) where p, must be replaced
by po. However, since V, at R = p, is non-zero, the neutral plastic region does not exist in
the present case. The stress-state for the elastic—plastic region 1 < R < p, corresponds to
the regime A'B’ of the yield hexagon, Fig. 1. To seek the solution in this region, we shall
regard the yield stress & as our basic unknown.
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h

Ay

PATHS SHOWN IN Fi16G. 2

hucd 684, — Toarr= b, FOR m = 1 AND P = 1'5, AND VARIOUS LOADING
%

a

Paths n
0 01 05 1 5
0210265 0:179076 0-112388 0-076668 0-021624
(a) 0-133727 0118116 0-080540 0-057605 0-017551
1-577683 1-462343 1-259519 1-166244 1042151
0-210265 0-180346 0115277 0-079590 0022956
{b} 0 0097274 0086628 0-060339 0-043784 0013724
1-577683 1-488344 1-301083 1-203190 1-056234
0210265 0-181090 0117018 0-081387 0023810
(c) 0067484 0-060228 0-042274 0-030876 0-009826
1-577683 1-494018 1-313433 1-215376 1-061578
0-069041 0-061660 0-043063 0-031201 0-009693
(a) 0-061529 0-055085 0-038856 0-028390 0-008982
1627605 1-514811 1-307591 1-204197 1-054902
0-069041 0-062149 0-044312 0-032554 0-010387
(b 1 0-042330 0-038457 0-028095 0-020980 0-006908
1-627605 1-542607 1-350281 1-241904 1069162
0-069041 0-062396 0-044984 0-033311 0-010802
(¢} 0-028789 0-026285 0-019466 0014679 0-004931
1-627605 1-547972 1-362299 1-253891 1-074462

t For each loading path, the first row is the value of u,/b,, the second is § — 8, and the last is

hfag all at r = b.
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F1G. 6. Angular displacement at the edge of the hole for n = 1, and P < im?,
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Substituting (2.18) into the yield condition (2.11a) we have
6,—69 = — (6, R), 4.1)
(G, R) = (62 —m?R 2"~ %), 4.2)

Eliminating &, from (2.19) and (4.1), and integrating the resulting equation subject to the
boundary condition (2.17a) with & = 1, we obtain

R
G, = R‘"[—P+ f v~ Yo, y)dy]. (4.3a)

1
The stress-component &, is now given by
gy = 6, + (&, R), (4.3b)
and the shearing stress .4 is, of course, defined by (2.18).
From (2.20a), (3.2) and (4.3a), the continuity of G, at R = p,, relates g, to P as
po
P= (- g+ [ WGy (@4)
1

Before we determine 4, and subsequently ¥, as functions of R, we shall first consider the

displacement field.
For the stress point on the regime A'B’, Fig. 1, the flow rules (2.11b) give

& +é=¢ =0
which, with the initial conditions that the plastic strains are zero at the initiation of the
plastic flow, yield

& +é =6 =0 (4.5a)
and, thus,
& +& = &+&, (4.5b)
g = &;. (4.5¢)
Upon substitution from (2.6) and (2.7), (4.5b, ¢} give
1 d 1—v
— —(RU,) = —=(6,+6 4.6
R dR( r) E (U,+09), ( a)
and
H = H, [1 —l—%(a,wg)]. (4.6b)
With the aid of (4.1), (4.6b) yields the thickness profile
H v
-_— = i 2_ G 4.
i = 1§20 +YG R (4.7)

where ¥ is given by (4.2), and &, is given by (4.3a). Substituting &, from (2.19), we can rewrite
(4.6a) as

-V

4 kv - = ore, +-% k2%
EE(RU,)— i |:nRa,+dR(R_a,):|. (4.8)
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In view of (4.3a), (4.4) and the continuities of U, and &, at R = j, given by (2.22a), (2.20a)
and (3.2), we may apply Fubini’s theorem to the double integral, and integrate (4.8) to
obtain

. -\ 2 = 32 = \n
e sl P o

Po
+(2-n"! j (nR™2y—2R™™y"" Wi(&, y) dy} , forn#2, (4.9a)
R
and
EU, 73
L 5 i o) o
Po
+R™2| y2lny-2In R-—l)lj/(&,y)dy}, forn = 2. (4.9b)
R
Since ¢f = —&] = £5— &, from (2.6) and (2.7} (without superposed dots), we have
6 = = = = ~F(60—15)

which, upon substitution from (4.1}, (4.3), (4.4) and (4.9), yields

Forr — Fom ﬁoz - = -1 -1 502
Eej = —Eey = | o) (1, po)=¥(@, R)+n(1—v)2—n)" "1 (B~n) 3

50 " _ Po s ey ) _
'(}?) ]W(l,po)-kj (R™%y—R7"y" )*!/(a,}’)dy}, forn=2  (4.10a)
R
and

- 2 — 2 —
Eej = —Eey = (%—) V(1L po) = VG, R)+2(1—v>{(ﬁ-n>"‘(ﬁ’,—§) In (%)xm,ﬁo)

Do
+R'2f y(In y—In RW/(&, y)dy} , forn =2 (4.10b)
R

1t is important to note that the integral terms in (4.9) and (4.10) vanish only if n = 0, i.e.
for a uniform disk which, of course, is a very special case of the general problem treated in
the present study.

Eliminating A and &, — &, from (2.11), (2.16) and (4.1), we arrive at

¥ia, R)—w =& @11

where ¢; is obtained by taking the derivative of (4.10) with respect to time parameter ¢, and
setting & = 1 at g = R At a given state, (4.11) defines the rate 6(R, t).
To determine the angular displacement, we first rewrite (2.6) as
Uﬁ UG
R

~2J S'GdR--zj 0 4R 2 f!ﬁ?dR,
R- R
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From (2.7) and (2.18), for n > —2, we obtain

—2f ) S L S
E n+2

Noting (2.11b) and (2.16), we have
% &y
—Zf dR-—2Jl —R "~3dR

Therefore,

EU, 1+v 2Em P G
= ———R " —R " dR. .
R n+2 a Jg &2 4.12)

In view of (4.11), (4.12) defines the rate of change of U, whose initial value at po = R is given
by (2.22b).

Upon substitution for the stresses from (2.18) and (4.3), we can rewrite the restriction
6,69 < G2, which confines the state of stress corresponding to the regime A'B’ in Fig. 1, as

R 2

{—2PR‘"+l//(6, R)+2R‘"f y"~ (o, y)vdy} < g% (4.13)
1

The state of stress must satisfy (4.13), with the equality sign corresponding to the singular

regime B’ of the yield hexagon, Fig. 1. With the aid of (4.4), it is found that (4.13) is always

satisfied at R = g, for values of n between —2 and 2, provided that

m< pht? (4.14)

which is also required in order to render the physical quantities real. However, as noted
in [11] for a uniform disk, n = 0, (4.13) may be first violated (with equality sign) at R # 1.
We shall consider such a loading program that (4.13) is satisfied for 1 < R < g, since,
asnoted in [11], when the state of stress reaches the singular regime B’, no further deformation
can be predicted by the infinitesimal theory. We finally note that the condition 4 > 0
implies & > 0, as can be seen from the hardening law (2.16).

Considering p, as our time parameter, for a general loading program defined by

P = um, (4.15)

where p is a given function of P and m, we may eliminate P, m and &, from (4.12), (4.15)
and equations resulting from the derivatives of (4.4) and (4.10) with respect to time para-
meter py, and obtain a Volterra integral equation of the second kind, i.e.

Po
5(R, po) = Fi(R, o)+ f K(R, y, po)(0: po) dy, (@.16)
R

where the value of g, is fixed and F, and K are given for a given state as functions of
R, 6, m and p,. The usual method of successive approximation [13] can now be applied to
(4.16) to obtain the rate (R, po) in the region 1 < R < p, for a given state.

For the special loading program

m = my = constant, 4.17)

the basic unknown (R, p) can be obtained in a simple way. Indeed, for the loading
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program (4.17) and subject to the conditions gg = 0and 6 = 1 at R = j,, and & for R < p,
given by (4.10), we can integrate (4.11) with respect to the time parameter j, to obtain

G1(6, R, Po) = H(5, R, o)~ —""—“—1—[(”) ‘(%‘3) ]lﬁ(l,ﬁo)

B—-n2—-n)}\R
1 ) p=n) (4.182)
= A [ R-2y  Rey s, ) dy, form 2,
2—n R
and
o - _ o 2n(1—-v)|po\*, [P _
G4(G, R, po) = # (G, R, po)—-'%:—(”—;) In (%") WL, 5o)
s (4.18b)
= 25(1 —v)R‘ZJ y(n y—In RW(G, y)dy, forn =2,
R
where

H#(3, R, po) = In{[6+ (G, R)J/[1 +¥(1, R)]} +y(1, R)— (3™ ' — (3, R)—rl(ﬁ—;) ¥(1, po),
(4.18¢)

and
aog

E

trl &

n (4.18d)

Equation (4.18a) or (4.18b) is to be solved for &(R, po), where 1 < R < p,, and pg is fixed.
Since for metals the ratio o,/E is of the order of 10~ 3, 5 defined in (4.18d) is a small quantity
for the usual values of the work-hardening parameter, a. It is noted that for n = 0 (non-
hardening materials), (4.18a, b) have the solution &(R, p,) = 1. For the very special case
of a uniform disk, n = 0, the integral on the right-hand side of equation (4.18a) vanishes,
and the solution 6(R, p,) then corresponds to the zeros of the algebraic function G,(&, R, p,)
= 0. For n # 0 and n # 0, the solution &,(R, p,) at a fixed j,, can be obtained either by a
successive approximation or by a perturbation method with 5 as the perturbation para-
meter.

To use the method of successive approximation, we may begin with an initial approxima-
tion 3‘9(R, p,,), which is obtained by setting G, equal to zerof, and evaluate the right-hand
side of (4.18a), resulting in, say, C(R, p,). The next approximation can then be obtained by
setting G, — C equal to zero; in order to have a better approximation the more accurate
values of @ may be used to evaluate C as soon as they are available. We repeat this procedure
until it converges to an accurate result. For intermediate values of the load parameters,
for which (4.13) is satisfied, and for usual value of a, say a ~ 10, the right-hand sides of
equations (4.18a, b) are small quantities. Hence, the successive approximation is rapidly
convergent. For instance, with n = 1, v = 0:3, 6o/E = 10”3, a = 10 and at my; = 09 and
po = 1-1 (which corresponds to P = 0-6117), the results of the first and second iterations
agree with each other up to eight figures.

For small values of n, we may use a perturbation technique by setting

(R, po) = 14+1®(R, 5o) +n*D5(R, po)+. . .. 4.19)

t For n = 2, G, must be replaced by G,, equation (4.18b).
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As a first-order perturbation solution to (4.18a, b), we find

L ¥(1, po) [{Po)? n(1—v) Po\* [Po\"
U A== LR

n(1 (4.20a)
2— nv.p f (R™2y—R™"""1y(1, y)dy, forn # 2,
and
= = W(1, po){ Bo\* 21—=v). [p,
s - [
(4.20b)

2(1—v)
¥(1,R)

We observe that since (4.20a, b) give @,(p,, po) = 0, the two-term approximation of (2.24)
yields a(p,, po) = 1 as should be expected. While the perturbation solution gives an exact
value for & at R = p,, the result it predicts becomes less accurate when R is close to 1.
An extreme example is given by the case when my = 1 for which p(R, p,) approaches to
infinity as R approaches to 1. For my < 1, say m, = 0.9, and small #, the two-term pertur-
bation solution given by (4.20) and (4.19) yields fairly accurate results.

As a numerical example, we consider the case when n =1, 6,/E = 1073, v = 03,
my = 09 and p, = 1-1. The distributions of yield stress (R, p,) obtained by a two-term
perturbation solution and by a successive approximationt are compared in Fig. 7 for

+

Po
R_zf y(In y—In RWi(1, y)dy forn = 2.
R

IOIZK
—————  Exact Solution
10Ny ———~—— Two- Term Perturbation

1.008

| 102 104 r 106 108 L
b

Fi16. 7. Comparison between two-term perturbations and exact solutions of equation (4.18); n = 1,
ao/E = 1073, v = 03, my = 09, p, = 1-1 and indicated values of a.

t Since the results obtained by the successive approximation can be made as accurate as we please, the corres-
ponding solution may be viewed as “‘exact”.
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the indicated values of a; note that = 1072 for a = 10. As is evident from Fig. 7, for
a = 1, the results predicted by these two methods agree very well with each other, and
for a = 10 the discrepancy becomes larger only for points at the vicinity of the hole. For a
more accurate comparison, Table 2 displays the yield stress & at the edge of the hole and
the value of P which is calculated according to (4.4) when & is determined for 1 < R < 5.
It is interesting to note that, for given m, and p,, and for large values of q, say, a = 10,
the value of the yield stress at the edge of the hole, obtained by the two-term perturbation
solution, is in error by 0-11 per cent, while the error in the value of P is only 0-01 per cent.

TABLE 2. COMPARISON BETWEEN TWO-TERM PERTURBATION AND EXACT SOLUTIONS OF (4.18);
n=1,60/E=10"3v=03,m, =09, 55 = |-1 AND a AS INDICATED
P 1S CALCULATED ACCORDING TO EQUATION (4.4)

a 1 2 3
Two-term Two-term Two-term
perturbation Exact perturbation Exact perturbation Exact
P 0-611162 0-611159 0611234 0-611227 0-611306 0-611294
a(b)/o, 1-001139 1-001087 1002277 1-002159 1:003416 1-003217
a 4 5 10
Two-term Two-term Two-term
perturbation Exact perturbation Exact perturbation Exact
P 0-611377 0-611361 0-611449 0-611427 0-611804 0-611747
a(b)/o, 1-004555 1-004260 1-005694 1-005291 1-011387 1-010253

B. Discussion and numerical results

For the values of the load parameters m and P such that neither (4.13) nor (3.8) is
violated, the distributions of the shearing stress &,, for elastic—plastic and rigid—plastic
disks are exactly the same, as given by (2.18). The stress components &, and &, in the elastic
region, R > p,, of an elastic—plastic disk differ from those in the rigid region, R > p,,
of a rigid—plastic disk only because of the Poisson ratio v, where 5, denotes the radius of
the elastic—plastic, and p, that of the rigid—plastic interface; v = } for rigid—plastic and
0 < v < } for elastic—plastic materials. However, the presence of the elastic strains and
hardening effect will render the stress components &, and &, in the elastic—plastic region,
1 < R < p,, of an elastic—plastic disk different from those in the neutral plastic region,
1 < R < p,, of the corresponding rigid—plastic disk.

To illustrate the effect of elastic strains and hardening on the solution, we consider
an example of a conical (n = 1) elastic—plastic disk with ¢,/E = 1073, v = 0-3, arbitrary a,
and under the loads my = 09 and P = 0-611747 attained by the loading program (4.17).
It is found that the dimensionless radial displacement U, at the edge of the hole equals
to 0-5050 x 1073 for a = 1, and to 0-5040 x 10~ 3 for a = 10; since this displacement is of
the order of the elastic displacement and is affected only slightly by the hardening parameter
a, the result obtained assuming a rigid—plastic material appears to be a good approximation.
The distributions of stress components &, and &, for a = 1, 5 and 10, are given in Table 3
where the corresponding results for the rigid—plastic disk are also reported for comparison.
As can be seen from Table 3, for an elastic—plastic disk, the effect of the hardening parameter,
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TABLE 3. COMPARISON OF STRESSES FOR ELASTIC-PLASTIC AND RIGID-PLASTIC SOLUTIONS ;

n=100E=10"3%v =03 m, =09, P= 0611747 AND a AS INDICATED

r/b 1 1-02 1-04
a —0,/0, 0o/00 ~0,/00 Go/00 —0,/0o 06/00
1 0611747 —0-173365 0-586000 —0-054927 0-562069 0-038459
Elastic—plastic 5 0-611747 —0-163841 0-585992 - 0050165 0-562055 0-041047
10 0611747 0152824 0-585982  —0-044467 0-562035 0-044182
Rigid—plastic 0611747 —0-175857 0-590233  —0-060381 0-567991 0031880
r/b 1-06 1-08 1-10
a —0,/0¢ 06/06 ~-a,/0, 0y/Go —a,/oy 64/00
1 0-539963 0-115345 0-519457 0-180371 0-500372 0236362
Elastic—plastic 5 0:539942 0-116706 0-519431 0-180950 0-500344 0-236393
10 0-539914 0-118365 0-519397 0-181650 0-500308 0236425
Rigid—plastic 0-545417 0-109551 0-522760 0-176928 0-500576 0-183223

a, on the stress component &, is negligible, while the stress component &, is only slightly
affected by a. The distribution of stress component &, for an elastic—plastic disk is consider-
ably different from that for a rigid—plastic disk only when q is large; this can be expected
because the solution in the neutral plastic region of a rigid—plastic material is independent
of a. However, the difference between the distributions of the stress component &, for an
elastic-plastic and a rigid-plastic disk is small; this is not strange because both disks must

satisfy the same boundary condition 6(R) = —P at R = 1.
i’
% Elastic - Plastic Solution g—'
] _ o
03 L %’ =10°,v=03,0= 10 05

— 77 7 Rigid-Plastic Solution

1

102

104

106

108

-62
L

F1G. 8. Comparison of stresses for elastic-plastic and rigid-plastic solutions; n = 1, mg = 09 and
P =0-611747.
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Figure 8 compares stresses obtained for elastic—plastic and rigid—plastic solutions,
where the value of a for the elastic—plastic disk is taken to be 10. It is noted that under the
loadings considered here, g, = 1-1 and p, = 1-084; the discontinuity of the slope of &,
at R = p, for the elastic—plastic disk, and that at R = p, for the rigid—plastic disk, make
the distribution of &, for each of these two disks considerably different from the other in
the region py < R < p, and immediately outside of py. On the other hand, the distributions
of the corresponding radial stress 4, in these regions do not differ from each other signifi-
cantly, see Fig. 8.
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AGcTpakT—O6CYXnaeTcs XoHeyHas ¥ MHOQUHUTE3MMaNbHas nehopMauusa OECKOHEYHO PaCIpPOCTPaHAIO-
LLETOCA OCeCHMMETPHYECKOTO OHCKA, HEPABHOMEPHON HAYANbHOM TOMUIMHBI, C KPYIJIBIM OTBEPCTHEM.
JIMCK HArpyeH NaBJIEHMEM M KPYTAILHM MOMEHTOM HEYMEHBIUAOWEHCs BeJIMYHHBI, BAOAb BHYTpPEHHEH
MOBEPXHOCTH OTBepcTHA. llpeamonaraercd IUIOCKOE HANPSsDKEHHOE COCTOSHHE, NP HKCIONMb30BaHUU
TEOPMHM TLIACTHYECKOrO TeuyeHUA. [IpHHHMAETCs, YTO MaTepHall AHCKA XKECTKO-LUTACTHYECKUH IJTsi KOHEYHBIX
nedopmaimit M ynpyro-naacTHyeckHit UIA MHOUHAUTE3MMAaTIbHLIX OedopMaiiii. AHANW3 OCHOBaH Ha
KPHTEpHHM TeKy4ecTH TpecKH M 3aKOHe H30TpomHoro ympounenus. O6pawaercs ocoboe BHUMaHHE Ha
3bdexTrl KpyTALEro MOMEHTA, NapaMeTpPe YNPOYHEHHUA W TPAeKTOPMM HArpy3KH B pelucHMio. JJarotcs
NMoAPOGHBIE Pe3yAbLTATHL M CPABHEHHS Ui HAYaJbHO PABHOMEPHOIO M HAYAJIBHO KOHHYECKOTO IUCKa.
Hakosew, NpUBOANTCA CPABHEHHE MEX/Y PELICHHUSMHU IJIS YIPYro-IUIaCTH-4ECKMX H KECTKO-IUTACTHYECKHX
nuckos. OHO TNOKa3bIBAET, YTO MMOJIE HAMPSDKEHWM HAXOMWTCA TOJBKO ClIerKa MOA BIMAHHEM YIPYTHX
nedopmauuit.



